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Method of Stationary Phase

We now describe the method of stationary phase,
which gave the estimate

(1) x@rtN) =0 (@ +eNh T F)

This is actually a beautiful and clever appli-
cation of stationary phase. First we need to
describe the basic method.

It consists of two quite distinct ingredients:

e Integration by parts to localize at critical
points;

e Comparison to a Gaussian integral to eval-
uate asymptotically near critical points.
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Method of Stationary Phase

We consider a general oscillatory integral

I.(a,p) =/ a(az)eiks(x)da:

n

where a € C5°(R"™). S is called that phase func-
tion and a is called the amplitude.

The stationary phase points of I.(a, ) are the
points x in the supp a where dp(x) = 0. Using
a partition of unity we can break up the integral
into terms where S has a unique critical point
in suppa. We can choose coordinates so that
this point is at the origin.
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Stationary Phase expansion

Let us write H for the Hessian of S at O and
R3 for the third order remainder:

S(x) = 85(0) + (Hx,z) + R3(x).

T he stationary phase expansion is:

irsgn(H)/4
I.(a, o) = (2%)71/2@ GZkS(O)Zﬁe

v/ |detH |
Zpt ~ 3232 g k~Ia(0),

for certain coefficients a;(0). We will explain
how to compute them later on.



Lemma of stationary phase

Lemma 1 If dp(x) #= 0 on supp(a) then
/n a(:c)eikgo(x)d:c = 00O 1)

for all K > 0.

The proof is to integrate repeatedly with the
operator

1 1 Y
L =2 |V Vo V.
) /\I ] @

It is well defined when V¢ %= 0 and reproduces
the phase. Integration by parts K times proves
the Lemma.



Fourier transform of a Gaussian

T he simplest case of the stationary phase method,
and the basis for the general proof, is the case
where the phase function S(x) is purely quadratic,
i.e. of the form S(x) = (Azx,x)/2 + i(x,&) for
some symmetric n X n matrix A.

In order that the integral be well-defined we
need (RAz,z) > 0.

Theorem 2 In this case,
fRn €—Z<$,§>€—<A$,$>/2dx

= (2m)"/2(det A)~1/2e—(ATEL),
The square root is defined by

(det A)~1/2 = |det A|~1/2¢459n (A)
where sgn(A) is the signature of A (the num-
ber of positive minus the number of negative
eigenvalues).



Fourier transform of an imaginary
Gaussian

The Gaussian e#4%:%) js not in L2 so we need
to define its Fourier transform.

We recall that a tempered distribution u € &’
IS @ continuous linear functional on the space
S of Schwarz functions.

The Fourier transform is an isomorphism on S,
and hence extends to S’ by duality, i.e. u(p) =
u(@). Thus, e.g., 5o = 1..



Fourier transform of an imaginary
Gaussian

Since eH{Az7) ¢ S’ it possesses a Fourier trans-
form. We can calculate it by continuity by re-
placing A by A + 7¢I and letting ¢ — O.

In the case of u(z) = e (A%:2)/2 we can calcu-
late the Fourier transform by solving a systems
of ODE's. We observe that D;u = —i(AD);u.
Multiplying by A1 gives i(A=1¢),; = D;a. Thus,
4= Ce{A7€6)/2 \When A is positive definite,
C = (27)"2(det A)~1/2 and hence the formula
holds by continuity.



Gaussian stationary phase

AS a warm-up to stationary phase, we prove:

Theorem 3 Let A by symmetric and non-degenerate
and SA > 0. Then for every k > 0, and
a(z) € S,

IAN(Ax,x)/2 _ 1
fon a(z)etiAe)/ 2de = /det(\A/271)

X 826 5(2i0)"H(ATID, D)a(0) 4+ Ri(V),

Ri(\) = O(A27k 5, cop [1Dal | 2.
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Proof

We observe that
/ a(x)ez)\ (Ax x>/2dx

is the pairing of the Schwarz function a(x) with
the tempered distribution eMA%:2)/2  Plancherel’s
theorem (f, g) = (Ff, Fg) on L? extends to the
pairing of S and S’. Hence, the integral equals

L / G(£)eN HATIED 2,
Jdet(AA/2mi) /R”

We now Taylor expand the exponential, using
that
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Proof with poor remainder

It follows that

\/det(AlA/zm') fana(€)e AT 2y
B \/det(AlA/zm) S e A i 6(€) A g

O iz fen 8@ o).

The dependence on a in the remainder is rather
strange:

A1 A—1D. D)k
a8 — | ATDDE
so the estlmate IS in terms of
A—1D. D)k
IFCATRPE

k!

We will present a better estimate later.
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Hormander proof of stationary phase

Theorem 4 Let K C R™ be compact, let U be
an open neighborhood of K, and let k € N. Let
a € CgP)K),S € C®(U) with IS = 0. Assume
S'(zg) = 0,det 8" (xzg) # 0,5" # 0 in K\{zo}.
T hen:

Jrn a(x)eMS (@) dy =

= *3(20) | [det(AS" (x0))/27i) Xj<i AT Lja(zo)

FOAF ) <2k 5UP [ D¥u(a)]).

Here, if gzo(x) = S(z) — S(zg) — (S"(zg)(x —
xg), (x — xg))/2 then

Lia= Y Y -

V—u=y3 2v>2u

(8" (20) 1D , D" (gk a).
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Outline of Hormander proof

Notation:

1. M = ¥ <ok sup |D%(z)|.

2. a1 = a cutoff p times the Taylor expansion
of order 2k at xg of a.

3. S(z) = S(x0)+(S"(x0)(z—20), (x—20))/2+
gxo(:r;), gzo = third order Taylor remainder.

4. gzg = Gz + R3p(x) where the remainder
vanishes to order 3k
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Outline of Hormander proof

e Replace a by ay. Integrate by parts to show
that a — a7 can be estimated by Mwk.

e Replace the phase by Ss(z) = (S"(zg)(z —
zg), (x—x0))/24sgz,(x) and consider I(s) =
[ a1e?%@dz. Show I(1) = Y, o5 I#(0) /1!
modulo Mw™k.

e Replace gy, by Gy, modulo Mw™F.

e [ his reduces to Gaussian stationary phase
where the amplitude involves only 2k deriva-
tives of the original amplitude.
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Details of step 1

We have: S'(z) = S'(z) — S (zg) = 5" (zp) (z —
zg) + O(|z — zg|2). Hence, for small z — zg,

& — zo| < 2]]5"(z0)~H||S"(2)]

|x—x0|

= |5@) = ¢

When the amplitude a — a1 vanishes to order
2k at zg, one can integrate by parts k£ times
using +L where

1

S ws@ip oY

Let O, denote the functions which vanish to
order k at zg. Then L' : Oy — O,,_o. SO
(LY™(a — aq) is integrable for m < k and so

|/(a — al)ei)‘sdﬂ < CMATF,
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Details of step 2

Introduce I(s) = [pn a1(z)e®s(@)dz where Ss(x) =

(8"(xz0)(x — x0), (x — 20))/2 + sgzo(x). Then

1) =Y 109(0)/ui+0( sup [TV (s)|/(2kD).
p<22k O0<s<1

Here,

1@ () = (NP [ a1(2)g2E (2)e* o,

The integrand vanishes to order 6k so we can
integrate by parts in L 3k times, taking \2¢F —
A\~k. Since a1 involves only 2k derivatives of a,
the remainder is bounded by M\~F.
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Details of step 3

The same argument shows that one can re-
place gk, by G%, since the difference gives an
amplitude that vanishes to high order at =zq.
One now integrates by parts k£ 4 u times.
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T he reduction

We are now reduced to

Z,u<2k 7w (0)/u! = Z,u<2k (,L)\)M

f aq (LU)GC'LCLO (Qj)ei)‘<5”(a:0)(33_330)7(56_370))/26133_

We use Plancherel to write the puth term as

(det(\S"(zg)/2mi)~1/2

[ Fla1 Gl ) (&)er (5" (@0)166)/2g¢.

We then Taylor expand to order u + k.
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The finite part

The Taylor polynomial of order u + k£ of the
uth term equals

(det(AS"(zg)/2mi)~1/2

S o< ut k(200 V(S (26) "1 D, DY (iAGag)Halzg) /vip!.

Then use: Sobolev inequality, Plancherel for-
mula and the estimate
j k
e = Y <o
j<k '
to obtain the reminder estimate. A priori it
involves 6k = n/2 derivatives of the phase and
amplitude, but due to step one of the reduc-
tion, the amplitude now depends only on the
2k-jet of the original amplitude.
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Formula for coefficients

We now give a graphical interpretation of the
coefficients

Lig= Y Y -
v—u=y3 2v>2u
We associate a labelled graph (I,£) to each
term in this sum (and for each j. The graph
has two types of vertices: one open one (which
may be absent) and closed vertices. Further;

(8" (20) 1D ,D)”(gk a).

1. p is the number of closed vertices
2. v is the number of edges;

3. Thus, —j = x(I'") where " is  minus the
open vertex.
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Feynman diagrams

The closed vertices correspond to the ‘phase
factors’, the open vertex corresponds to the
amplitude. It takes 3 derivatives of each phase
factor to give a non-zero contribution, since
the phase factor Gz vanishes to order 3. Hence,
each closed vertex has valency > 3.

We note that there are only finitely many graphs
for each x = —j because the valency condition
forces I > 3/2V. Thus, V < 25,1 < 3j.
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Feynman amplitudes

By definition, I,(I") is obtained by the follow-
ing rule: To each edge with end labels 3,k one
assigns a factor of 1h=7"C where H~1 = (nik).
To each closed vertex one assigns a factor of
kag?uS(g;Zw where v is the valency of the ver-
tex and ¢1...,%, at the index labels of the edge
ends incident on the vertex. To the open ver-
tex, one assigns the factor aﬁi%aoiw’ where v
is its valence. Then I,(I") is the product of all
these factors. To the empty graph one assigns
the amplitude 1. In summing over (I',£) with
a fixed graph ', one sums the product of all

the factors as the indices run over {1,...,n}.
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Euler characteristic expansion

As noted above, the terms in the A7 term
correspond to graphs with —j3 = xpr, where
xr» = V — I equals the Euler characteristic of
the graph I’ defined to be I minus the open
vertex. T he stationary phase expansion is thus
an Euler characteristic expansion

_ 1,(1)
Lja = 32(r 0):xpr=—j 5(F)

The function ¢ ‘labels’ each end of each edge
of I with an index ¢ € {1,...,n}.
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Example: ;=1

There are 5 possible graphs with y = —1 =
V — I. The possibilities are:

1. V=0,1 = 1: thus, two derivatives on the
amplitude h%D;D;ja.

2. V=1, = 2. If no open vertex, then two
loops at one closed vertex

hhkD; DDy DS (0).

If one open vertex, then: a loop at the
closed vertex plus an edge between the ver-
tices:

h 1k D;D;D;,.S(0)Dya(0).
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3. V =2, = 3. Two dgraphs. one loop at
each closed vertex plus one edge between
the two:

K hEER™" D, D D},.S(0) Dy Din DS (0).

Or three edges from the left closed vertex
to the right:

hhEER™" D, Dy Dy S(0) D Dy DR S(0).



Bessel functions

As a first example, let us consider the Bessel
integrals

(2) Iy = [ eNOa,

where dw is the standard Haar measure on
S"—1 A more elementary formula is

7T .
Ju2(r) = [P sin" 1 (p)de.
2

As is well-known, these integrals have quite dif-
ferent behaviour in even and odd dimensions:
in even dimensions, they have the form

SN A

IN(A) — %|>\|n_1/2p’n(}\)7

where P, is a polynomial of degree n, while in
odd dimensions the factor B, is not a polyno-
mial and the expansion is not exact.
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