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Method of Stationary Phase

We now describe the method of stationary phase,
which gave the estimate

(1) χ̂(2πtN) = O

(
(1 + |tN |)−

(n+1)
2

)
.

This is actually a beautiful and clever appli-
cation of stationary phase. First we need to
describe the basic method.

It consists of two quite distinct ingredients:

• Integration by parts to localize at critical
points;

• Comparison to a Gaussian integral to eval-
uate asymptotically near critical points.
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Method of Stationary Phase

We consider a general oscillatory integral

Ik(a, ϕ) =
∫
Rn
a(x)eikS(x)dx

where a ∈ C∞0 (Rn). S is called that phase func-

tion and a is called the amplitude.

The stationary phase points of Ik(a, ϕ) are the

points x in the supp a where dϕ(x) = 0. Using

a partition of unity we can break up the integral

into terms where S has a unique critical point

in suppa. We can choose coordinates so that

this point is at the origin.
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2. Lars Hö rmander, The analysis of linear

partial differential operators. I. Distribution

theory and Fourier analysis. Grundlehren der

Mathematischen Wissenschaften [Fundamen-

tal Principles of Mathematical Sciences], 256.

4



Stationary Phase expansion

Let us write H for the Hessian of S at 0 and

R3 for the third order remainder:

S(x) = S(0) + 〈Hx, x〉+R3(x).

The stationary phase expansion is:

Ik(a, ϕ) = (2π
k )n/2eiπsgn(H)/4√

|detH|
eikS(0)Zh`k

Zh`k ∼
∑∞
j=0 k

−jaj(0),

for certain coefficients aj(0). We will explain

how to compute them later on.
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Lemma of stationary phase

Lemma 1 If dϕ(x) 6= 0 on supp(a) then∫
Rn
a(x)eiλϕ(x)dx = O(λ−K)

for all K > 0.

The proof is to integrate repeatedly with the

operator

1

λ
L =

1

λ
|∇ϕ|−2∇ϕ · ∇.

It is well defined when ∇ϕ 6= 0 and reproduces

the phase. Integration by parts K times proves

the Lemma.
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Fourier transform of a Gaussian

The simplest case of the stationary phase method,
and the basis for the general proof, is the case
where the phase function S(x) is purely quadratic,
i.e. of the form S(x) = 〈Ax, x〉/2 + i〈x, ξ〉 for
some symmetric n× n matrix A.

In order that the integral be well-defined we
need 〈<Ax, x〉 ≥ 0.

Theorem 2 In this case,∫
Rn e
−i〈x,ξ〉e−〈Ax,x〉/2dx

= (2π)n/2(detA)−1/2e−〈A
−1ξ,ξ〉.

The square root is defined by

(detA)−1/2 = |detA|−1/2e
iπ
4 sgn (A),

where sgn(A) is the signature of A (the num-
ber of positive minus the number of negative
eigenvalues).
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Fourier transform of an imaginary
Gaussian

The Gaussian ei〈Ax,x〉 is not in L2 so we need

to define its Fourier transform.

We recall that a tempered distribution u ∈ S ′

is a continuous linear functional on the space

S of Schwarz functions.

The Fourier transform is an isomorphism on S,

and hence extends to S ′ by duality, i.e. û(ϕ) =

u(ϕ̂). Thus, e.g., δ̂0 ≡ 1..
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Fourier transform of an imaginary
Gaussian

Since ei〈Ax,x〉 ∈ S ′, it possesses a Fourier trans-

form. We can calculate it by continuity by re-

placing A by A+ iεI and letting ε→ 0.

In the case of u(x) = e−〈Ax,x〉/2, we can calcu-

late the Fourier transform by solving a systems

of ODE’s. We observe that Dju = −i(AD)jû.

Multiplying by A−1 gives i(A−1ξ)j = Djû. Thus,

û = Ce−〈A
−1ξ,ξ〉/2. When A is positive definite,

C = (2π)n/2(detA)−1/2 and hence the formula

holds by continuity.
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Gaussian stationary phase

As a warm-up to stationary phase, we prove:

Theorem 3 Let A by symmetric and non-degenerate

and =A ≥ 0. Then for every k > 0, and

a(x) ∈ S,∫
Rn a(x)eiλ〈Ax,x〉/2dx = 1√

det(λA/2πi)

×
∑k−1
j=0

1
j!(2iλ)−1〈A−1D,D〉ja(0) +Rk(λ),

Rk(λ) = O(λ−n/2−k∑
|α|≤2k ||Dαa||L2.
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Proof

We observe that∫
Rn
a(x)eiλ〈Ax,x〉/2dx

is the pairing of the Schwarz function a(x) with

the tempered distribution eiλ〈Ax,x〉/2. Plancherel’s

theorem 〈f, g〉 = 〈Ff,Fg〉 on L2 extends to the

pairing of S and S ′. Hence, the integral equals

1√
det(λA/2πi)

∫
Rn
â(ξ)eiλ

−1〈A−1ξ,ξ〉/2dx.

We now Taylor expand the exponential, using

that

|ex −
∑
j<k

xj

j!
| ≤
|x|k

k!
.
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Proof with poor remainder

It follows that

1√
det(λA/2πi)

∫
Rn â(ξ)eiλ

−1〈A−1ξ,ξ〉/2dx

= 1√
det(λA/2πi)

∑
j<k λ

−j ∫
Rn â(ξ)〈A

−1ξ,ξ〉j
j! dξ

+O( 1√
det(λA/2πi)

λ−j
∫
Rn |â(ξ)|〈A

−1ξ,ξ〉k
k! dξ).

The dependence on a in the remainder is rather
strange:

|â(ξ)|
〈A−1ξ, ξ〉k

k!
= |F(

〈A−1D,D〉k

k!
a)|

so the estimate is in terms of

||F(
〈A−1D,D〉k

k!
a)||L1.

We will present a better estimate later.
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Hörmander proof of stationary phase

Theorem 4 Let K ⊂ Rn be compact, let U be

an open neighborhood of K, and let k ∈ N. Let

a ∈ C∞0 )K), S ∈ C∞(U) with =S = 0. Assume

S′(x0) = 0,detS′′(x0) 6= 0, S′ 6= 0 in K\{x0}.
Then:∫
Rn a(x)eiλS(x)dx =

= eiλS(x0)
√

det(λS′′(x0))/2πi)
∑
j<k λ

−jLja(x0)

+O(λ−k
∑
|α|≤2k sup |Dαu(x)|).

Here, if gx0(x) = S(x) − S(x0) − 〈S′′(x0)(x −
x0), (x− x0)〉/2 then

Lja =
∑

ν−µ=j

∑
2ν≥2µ

i−j2−ν

µ!ν!
〈S′′(x0)−1D,D〉ν(gµx0

a).
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Outline of Hörmander proof

Notation:

1. M =
∑
α≤2k sup |Dαa(x)|.

2. a1 = a cutoff ρ times the Taylor expansion

of order 2k at x0 of a.

3. S(x) = S(x0)+〈S′′(x0)(x−x0), (x−x0)〉/2+

gx0(x), gx0 = third order Taylor remainder.

4. gx0 = Gx0 + R3k(x) where the remainder

vanishes to order 3k
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Outline of Hörmander proof

• Replace a by a1. Integrate by parts to show

that a− a1 can be estimated by Mω−k.

• Replace the phase by Ss(x) = 〈S′′(x0)(x −
x0), (x−x0)〉/2+sgx0(x) and consider I(s) =∫
a1e

iλSs(x)dx. Show I(1) =
∑
µ<2k I

µ(0)/µ!

modulo Mω−k.

• Replace gx0 by Gx0 modulo Mω−k.

• This reduces to Gaussian stationary phase

where the amplitude involves only 2k deriva-

tives of the original amplitude.
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Details of step 1

We have: S′(x) = S′(x)− S′(x0) = S′′(x0)(x−
x0) +O(|x− x0|2). Hence, for small x− x0,

|x− x0| ≤ 2||S′′(x0)−1|||S′(x)|

=⇒ |x−x0|
|S′(x)| ≤ C.

When the amplitude a − a1 vanishes to order
2k at x0, one can integrate by parts k times
using 1

λL where

L =
1

||∇S(x)||2
∇S(x)∇.

Let Om denote the functions which vanish to
order k at x0. Then Lt : Om → Om−2. So
(Lt)m(a− a1) is integrable for m ≤ k and so

|
∫

(a− a1)eiλSdx| ≤ CMλ−k.
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Details of step 2

Introduce I(s) =
∫
Rn a1(x)eiSs(x)dx, where Ss(x) =

〈S′′(x0)(x− x0), (x− x0)〉/2 + sgx0(x). Then

I(s) =
∑
µ<2k

I(µ)(0)/µ!+O( sup
0<s<1

|I(2k)(s)|/(2k!)).

Here,

I(2k)(s) = (iλ)2k
∫
a1(x)g2k

x0
(x)eiλSs(x)dx.

The integrand vanishes to order 6k so we can

integrate by parts in L 3k times, taking λ2k →
λ−k. Since a1 involves only 2k derivatives of a,

the remainder is bounded by Mλ−k.
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Details of step 3

The same argument shows that one can re-

place g
µ
x0 by G

µ
x0 since the difference gives an

amplitude that vanishes to high order at x0.

One now integrates by parts k + µ times.
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The reduction

We are now reduced to∑
µ<2k I

(µ)(0)/µ! =
∑
µ<2k

(iλ)µ

µ!

∫
a1(x)Gµx0(x)eiλ〈S

′′(x0)(x−x0),(x−x0)〉/2dx.

We use Plancherel to write the µth term as

(det(λS′′(x0)/2πi)−1/2

∫
F(a1G

µ
x0)(ξ)eiλ

−1〈S′′(x0)−1ξ,ξ〉/2dξ.

We then Taylor expand to order µ+ k.
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The finite part

The Taylor polynomial of order µ + k of the

µth term equals

(det(λS′′(x0)/2πi)−1/2

∑
ν≤µ+k(2iλ)−ν〈S′′(x0)−1D,D〉ν(iλGx0)µa(x0)/ν!µ!.

Then use: Sobolev inequality, Plancherel for-

mula and the estimate

|ew −
∑
j<k

wj

j!
| ≤

wk

k!

to obtain the reminder estimate. A priori it

involves 6k = n/2 derivatives of the phase and

amplitude, but due to step one of the reduc-

tion, the amplitude now depends only on the

2k-jet of the original amplitude.
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Formula for coefficients

We now give a graphical interpretation of the
coefficients

Lja =
∑

ν−µ=j

∑
2ν≥2µ

i−j2−ν

µ!ν!
〈S′′(x0)−1D,D〉ν(gµx0

a).

We associate a labelled graph (Γ, `) to each
term in this sum (and for each j. The graph
has two types of vertices: one open one (which
may be absent) and closed vertices. Further;

1. µ is the number of closed vertices

2. ν is the number of edges;

3. Thus, −j = χ(Γ′) where Γ′ is Γ minus the
open vertex.
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Feynman diagrams

The closed vertices correspond to the ‘phase

factors’, the open vertex corresponds to the

amplitude. It takes 3 derivatives of each phase

factor to give a non-zero contribution, since

the phase factor G3 vanishes to order 3. Hence,

each closed vertex has valency ≥ 3.

We note that there are only finitely many graphs

for each χ = −j because the valency condition

forces I ≥ 3/2V. Thus, V ≤ 2j, I ≤ 3j.
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Feynman amplitudes

By definition, I`(Γ) is obtained by the follow-

ing rule: To each edge with end labels j, k one

assigns a factor of −1
ik h

jk where H−1 = (hjk).

To each closed vertex one assigns a factor of

ik ∂νS(0)
∂xi1···∂xiν

where ν is the valency of the ver-

tex and i1 . . . , iν at the index labels of the edge

ends incident on the vertex. To the open ver-

tex, one assigns the factor ∂νa(0)
∂xi1...∂xiν

, where ν

is its valence. Then I`(Γ) is the product of all

these factors. To the empty graph one assigns

the amplitude 1. In summing over (Γ, `) with

a fixed graph Γ, one sums the product of all

the factors as the indices run over {1, . . . , n}.
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Euler characteristic expansion

As noted above, the terms in the λ−j term

correspond to graphs with −j = χΓ′, where

χΓ′ = V − I equals the Euler characteristic of

the graph Γ′ defined to be Γ minus the open

vertex. The stationary phase expansion is thus

an Euler characteristic expansion

Lja =
∑

(Γ,`):χΓ′=−j
I`(Γ)
S(Γ)

The function ` ‘labels’ each end of each edge

of Γ with an index i ∈ {1, . . . , n}.
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Example: j = 1

There are 5 possible graphs with χ = −1 =

V − I. The possibilities are:

1. V = 0, I = 1: thus, two derivatives on the

amplitude hijDiDja.

2. V = 1, I = 2. If no open vertex, then two

loops at one closed vertex

hijhk`DiDjDkD`S(0).

If one open vertex, then: a loop at the

closed vertex plus an edge between the ver-

tices:

hijhk`DiDjDkS(0)D`a(0).
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3. V = 2, I = 3: Two graphs: one loop at

each closed vertex plus one edge between

the two:

hijhk`hmnDiDjDkS(0)D`DmDnS(0).

Or three edges from the left closed vertex

to the right:

hijhk`hmnDiDkDmS(0)DjD`DnS(0).



Bessel functions

As a first example, let us consider the Bessel
integrals

(2) IN(λ) =
∫
Sn−1

eiN〈λ,ω〉dω,

where dω is the standard Haar measure on
Sn−1. A more elementary formula is

Jn−2
2

(r) =
∫ π

0
eir cosϕ sinn−1(ϕ)dϕ.

As is well-known, these integrals have quite dif-
ferent behaviour in even and odd dimensions:
in even dimensions, they have the form

IN(λ) = <
eiN |λ|

|λ|n−1/2
Pn(λ),

where Pn is a polynomial of degree n, while in
odd dimensions the factor Pn is not a polyno-
mial and the expansion is not exact.
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